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Fig. 1. VideoSketcher enables sequential sketch generation in pixel space via video diffusion priors. Given a text prompt, our method generates a step-by-step
drawing process that follows natural stroke order with high visual quality (top). Our approach further supports user-specified brush styles (middle) and real-time
human-model co-drawing through an autoregressive framework (bottom). Please see the full videos in our project page: https://videosketcher.github.io/

Sketching is inherently a sequential process, in which strokes are drawn in
a meaningful order to explore and refine ideas. However, most generative
models treat sketches as static images, overlooking the temporal structure
that underlies creative drawing. We present a data-efficient approach for
sequential sketch generation that adapts pretrained text-to-video diffusion
models to generate sketching processes. Our key insight is that large lan-
guage models and video diffusion models offer complementary strengths
for this task: LLMs provide semantic planning and stroke ordering, while
video diffusion models serve as strong renderers that produce high-quality,
temporally coherent visuals. We leverage this by representing sketches as
short videos in which strokes are progressively drawn on a blank canvas,
guided by text-specified ordering instructions. We introduce a two-stage
fine-tuning strategy that decouples the learning of stroke ordering from the
learning of sketch appearance. Stroke ordering is learned using synthetic
shape compositions with controlled temporal structure, while visual appear-
ance is distilled from as few as seven manually authored sketching processes
that capture both global drawing order and the continuous formation of
individual strokes. Despite the extremely limited amount of human-drawn
sketch data, our method generates high-quality sequential sketches that
closely follow text-specified orderings while exhibiting rich visual detail. We
further demonstrate the flexibility of our approach through extensions such
as brush style conditioning and autoregressive sketch generation, enabling
additional controllability and interactive, collaborative drawing.

1 Introduction
Sketches and drawings are a fundamental medium for exploring,
communicating, and refining ideas [Fan et al. 2023; Tversky 2013].
Their expressive power lies not only in the final result, but also
in the process of drawing itself: through the gradual accumulation
of strokes, creators externalize thoughts, explore alternatives, and
iteratively refine emerging concepts [Goldschmidt 1992; Tversky
et al. 2003]. Computational models that generate sketches as se-
quential processes, rather than as static images, therefore have the
potential to enable richer forms of human-machine interaction, in-
cluding visual brainstorming, real-time feedback, and collaborative
prototyping through a natural visual medium.

Yet modeling the process of drawing — rather than only its static
final output — remains a significant challenge. The goal is not sim-
ply to generate strokes gradually, but to do so in a meaningful,
human-like order, where structure is built through semantically co-
herent progressions rather than arbitrary stroke sequences. Prior
approaches have taken important steps toward this goal, but face
fundamental limitations. SketchRNN [Ha and Eck 2017] introduced
autoregressive sketch generation trained directly on human draw-
ing sequences, enabling the model to learn stroke ordering from
data. However, this approach relies on millions of human-drawn
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sketch sequences and is restricted to a fixed set of object categories
with limited stylistic diversity.

More recently, SketchAgent [Vinker et al. 2025] demonstrated
that multimodal large language models (LLMs) possess a surpris-
ing capacity for sequential sketch generation without requiring
sketch-specific training. By prompting an LLM to output stroke
coordinates as textual commands, SketchAgent generates drawings
across a broad range of concepts, leveraging the model’s semantic
understanding to produce meaningful stroke orderings. However,
this approach has an inherent bottleneck: while LLMs excel at de-
ciding what to draw and in what order, they struggle with how to
draw it. As a result, the generated sketches, although semantically
coherent, tend to be overly simplistic and often lack visual quality.
In this work, we leverage text-to-video diffusion models for se-

quential sketch generation. Trained on large-scale video data, these
models encode rich priors over visual appearance, motion, and tem-
poral coherence. Our key insight is that video diffusion models
and large language models offer complementary strengths for this
task: LLMs provide semantic understanding that enables meaningful
planning and stroke ordering, but are limited as visual renderers,
whereas video diffusion models excel at high-quality visual syn-
thesis but lack an intrinsic notion of drawing order. We combine
these capabilities by using a video diffusion model as the “renderer”,
guided by an LLM that specifies what to draw and in which order.
We represent a sketch sequence as a short video in pixel space,

in which black strokes are progressively drawn on a blank canvas.
Despite the apparent gap between photorealistic video content and
abstract hand-drawn sketches, we show that video diffusion models
can be effectively distilled into sketch-like behavior using only a
handful of carefully constructed examples.

A key challenge in this distillation process is teaching the model
not only what sketches should look like, but also how they should
unfold over time, following the ordering instructions specified by
an LLM. Direct fine-tuning on hand-drawn sketches alone does not
reliably yield such temporal control. To address this, we introduce a
two-stage fine-tuning strategy. In the first stage, we train the model
on a small, manually constructed dataset of basic geometric primi-
tives, such as ovals, rectangles, triangles, and curves, arranged to
exhibit fundamental compositional relationships inspired by Gestalt
principles [Koffka 2013], including containment, adjacency, overlap,
and grouping. Each composition is rendered using multiple drawing
orders, teaching the model both a “visual vocabulary” of primitives
and the ability to follow text-specified stroke sequences. In the sec-
ond stage, we adapt the model to the visual style of hand-drawn
sketches using as few as seven examples, transferring the learned
temporal control to the target sketch domain.
Despite the extremely limited amount of real sketch data, our

method generates high-quality sequential sketches across a diverse
range of concepts, accurately following the ordering specified by
the text prompt while exhibiting substantially richer visual detail
and stronger temporal coherence (see Figure 1).
Beyond diffusion-based generation, we show that our distilled

model can bootstrap autoregressive sketch generation by synthe-
sizing additional training data, enabling interactive scenarios such
as collaborative co-drawing. We also demonstrate that video dif-
fusion models support brush style conditioning, allowing users to

control stroke appearance using a simple visual cue. This enables
brush-level control within a pixel-based generation framework — a
capability usually associated with parametric stroke representations
— and further illustrates the flexibility of video diffusion models for
modeling drawing processes.
Together, these results suggest that pretrained video diffusion

models offer a powerful and flexible prior for modeling drawing
processes, providing a new perspective on sequential sketch gen-
eration that does not rely on large-scale sketch datasets or explicit
parametric stroke representations.

2 Related Work
Sequential sketch generation. A common approach to sequen-

tial sketch generation represents sketches as explicit stroke se-
quences and trains models on large collections of human drawing
data [Ha and Eck 2017; Tiwari et al. 2024; Wang et al. 2025; Xing
et al. 2023a; Zhou et al. 2025]. Among these, SketchRNN [Ha and
Eck 2017] pioneered this direction by introducing the QuickDraw
dataset [Jonas et al. 2016], the largest collection of human-drawn
sequential sketches. However, approaches that learn directly from
such datasets are inherently constrained by the predefined cate-
gories and styles present in the training data. For QuickDraw, for
example, this corresponds to at most 340 object categories with
predominantly non-professional drawing quality.

To overcome this bottleneck, recent work has explored the use of
large language models (LLMs) [Minaee et al. 2025; Zhao et al. 2025]
to guide sequential visual generation. Because these models operate
primarily over text, they are typically paired with external systems
that translate language outputs into drawing actions or canvas
edits [Hu et al. 2024; Shaham et al. 2024; W3C 1999; Wu et al. 2023;
Yang et al. 2023]. SketchAgent [Vinker et al. 2025] frames sketch
generation as a language-driven process, in which a multimodal
LLM produces drawing instructions that are executed on a canvas.
While this enables flexible, text-conditioned sequential sketching
beyond fixed object categories, sketch quality remains constrained
by a textual bottleneck: although LLMs excel at semantic reasoning
and planning, they lack strong spatial and visual priors. As a result,
the generated sketches tend to be overly simple and exhibit a child-
like drawing style. In contrast, our method addresses this limitation
by leveraging the rich visual priors of video models as powerful
renderers of LLM commands, enabling substantially richer visual
detail while preserving text-specified stroke ordering.

Recently, video models have been applied to painting reconstruc-
tion. PaintsUndo [Team 2024] and PaintsAlter [Zhang et al. 2025]
aim to recover or reverse the creation process of an existing paint-
ing by predicting intermediate states conditioned on a completed
image. While effective for painting reconstruction, these methods
rely on 20𝑘 Procreate recordings for training and produce relatively
coarse, frame-level progressions. In contrast, we pursue a fundamen-
tally different goal: generating new sketches from text with explicit,
stroke-by-stroke progression. This enables open-ended creative ex-
ploration in which the final result emerges through the drawing
process rather than being predetermined. The slower, stroke-level
progression naturally supports co-creation, allowing users to inter-
pret and contribute as the sketch unfolds. Crucially, we demonstrate
that this can be achieved using only a handful of training examples.
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Finally, a related line of work uses reinforcement learning to
train painting agents that produce sequential paintings for various
tasks [Ganin et al. 2018; Mellor et al. 2019; Mihai and Hare 2021;
Zhou et al. 2018]. However, these methods are not designed to model
semantically meaningful stroke ordering and are typically restricted
to narrow domains, such as faces or a small set of predefined objects.

VLM-guided vector sketch synthesis. Large pretrained diffusion
and vision-language models (VLMs) provide strong semantic priors
and have been widely used for static sketch and vector graphic
generation [Podell et al. 2023; Radford et al. 2021; Rombach et al.
2022a; Saharia et al. 2022; Schuhmann et al. 2022]. A prominent line
of work formulates sketch synthesis as an optimization problem
over parametric vector strokes, which are iteratively refined under
pixel-space guidance from pretrained models, typically large-scale
VLMs, using differentiable rasterization [Arar et al. 2025; Choi et al.
2024; Gal et al. 2024; Jain et al. 2023; Li et al. 2020; Vinker et al. 2023,
2022; Xing et al. 2023b, 2024; Zhang et al. 2024].

While effective at producing semantically aligned static sketches,
these approaches optimize all strokes jointly toward a final objective
and do not explicitly model the temporal drawing process. As a
result, they lack meaningful stroke ordering and are less suitable
for interactive sketching scenarios.

Video priors and interactive video generation. Recent advances in
video generation show that models trained on large-scale video data
capture strong temporal structure and can serve as effective priors
for new visual tasks [DeepMind 2025; HaCohen et al. 2024; Kong
et al. 2025; OpenAI 2025; Wan et al. 2025; Wiedemer et al. 2025].
We build on this insight by adapting pretrained video generation
models to learn sketching behavior in a few-shot setting.

Standard video diffusionmodels generate entire video clips jointly,
making inference computationally expensive and limiting interactiv-
ity. Recent work, therefore, explores causal or autoregressive video
models that use temporally causal attention to generate frames se-
quentially [Chen et al. 2024; Cui et al. 2025; Huang et al. 2025; Yang
et al. 2025; Yin et al. 2024a,b, 2025a,b]. While these models may trade
some visual fidelity for efficiency, they are better suited for human-
in-the-loop applications. We adopt such an autoregressive model for
sequential sketch generation, enabling collaborative sketching.

3 Preliminaries
Diffusion models generate samples by learning to reverse a gradual
noising process. For high-dimensional data such as video, diffusion
is typically performed in a compressed latent space obtained via a
pretrained autoencoder, an approach commonly referred to as latent
diffusion [Rombach et al. 2022b].
Given a video 𝑉 ∈ R𝐾×𝐻×𝑊 ×3 with 𝐾 frames, a spatio-temporal

variational autoencoder (VAE) encoder compresses it into a latent
representation 𝑥0. In this work, we build on Wan 2.1 [Wan et al.
2025], a pretrained open-source text-to-video diffusionmodel, which
encodes the input video into a latent tensor 𝑥0 ∈ R

𝐾
4 × 𝐻8 ×𝑊8 ×16. Both

diffusion training and inference are performed in this latent space.
The diffusion model 𝑣𝜃 is a neural network—commonly imple-

mented as aDiffusion Transformer (DiT) [Peebles andXie 2023]—that
learns to map samples from a Gaussian noise distribution 𝑥𝑇 ∼

N(0, 𝐼 ) to clean samples drawn from the data distribution 𝑥0 ∼ 𝑝data
by progressively denoising 𝑥𝑇 .

Recent video diffusion models adopt rectified flow matching [Lip-
man et al. 2023; Liu et al. 2022], which defines a linear interpolation
path between clean data 𝑥0 and Gaussian noise 𝜖 ∼ N(0, 𝐼 ):

𝑥𝑡 = (1 − 𝑡) 𝑥0 + 𝑡 𝜖, 𝑡 ∈ [0, 1], (1)

where 𝑡 = 0 corresponds to clean data and 𝑡 = 1 corresponds to
pure noise. The network 𝑣𝜃 is trained to predict the corresponding
velocity field 𝑣 = 𝜖 − 𝑥0 by minimizing the following objective:

L = E𝑥0,𝜖,𝑡
[
∥𝑣𝜃 (𝑥𝑡 , 𝑡, 𝑦) − (𝜖 − 𝑥0)∥2

]
, (2)

where 𝑦 denotes the text conditioning embedding.
At inference time, generation begins from noise 𝑥𝑇 ∼ N(0, 𝐼 ).

Samples are obtained by integrating the differential equation
𝑑𝑥𝑡

𝑑𝑡
= 𝑣𝜃 (𝑥𝑡 , 𝑡, 𝑦) (3)

from 𝑡 = 1 to 𝑡 = 0, yielding a clean latent representation 𝑥0, which
is then decoded into a video via the VAE decoder D(𝑥0).

4 Method
Our goal is to generate a video depicting a sequential sketching
process conditioned on a text prompt, in which strokes follow the
specified ordering and exhibit natural drawing behavior.We build on
the strong priors of a pretrained text-to-video diffusion model [Wan
et al. 2025] and adapt them to the sketch domain through a two-
stage fine-tuning strategy. As we show, careful data construction
is central to effective distillation: by disentangling stroke ordering
from visual appearance across stages, the model learns complex
sketching behavior from only a handful of examples.

4.1 Sketch Representation and Construction
We represent a sketch sequence as a short video 𝑉 ∈ R𝐾×𝐻×𝑊 ×3 in
pixel space, depicting black strokes progressively drawn on a blank
canvas. A natural sketching appearance requires modeling not only
the global ordering of strokes, but also the local, continuous drawing
within each stroke, mimicking the motion of a human hand across
the canvas. To achieve this, we construct training data by capturing
sketching processes as SVGs (Scalable Vector Graphics) [Cai et al.
2023] and rendering them via procedural stroke animation. An
artist draws each sketch in Adobe Illustrator, which records both
the stroke sequence and the drawing trajectory of each individual
path. We then parse these SVG files and render them as videos by
animating each stroke to appear gradually along its path, producing
temporally structured sketching videos that preserve both stroke
ordering and within-stroke progression (see Figure 2).
This representation offers several advantages. First, it enables

fine-grained temporal control by ensuring that at most one stroke
is introduced per frame, avoiding artifacts such as simultaneous
stroke appearance. Second, it naturally accommodates different
video model requirements, including resolution, frame count, and
random seed, through simple adjustments to the rendering parame-
ters. Third, as shown in Section 5.3, the parametric nature of SVGs
enables the same stroke sequence to be rendered with different
brush styles, providing additional training data for brush condition-
ing with no further manual effort.
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<?xml version="1.0" encoding=..>
<svg xmlns="http://www.w3.or...

<path d="M40 40 L160..." />
<path d="M200 40 C260..." />
<path d="M40 150 L160..." />...

Fig. 2. SVG-to-video sketch representation. SVG paths are parsed and
rendered sequentially into a video in which strokes are progressively drawn
on a canvas. Each frame introduces at most one new stroke, ensuring clean
temporal structure while enabling pixel-based video diffusion modeling.

Although SVGs offer a compact and structured representation, di-
rectly generating parametric sketches typically requires specialized
architectures or inference-time optimization, often relying on large
datasets and without explicitly modeling stroke order. By operat-
ing in pixel space, we instead leverage the full generative capacity
of pretrained video diffusion models while still producing clean,
parametric-like visual quality through sequential generation.

4.2 Text Prompt Construction
The text prompt must specify not only what to draw, but also the
order in which elements should be drawn.We adopt a prompt format
consisting of a brief description of the subject followed by an explicit,
numbered sequence of drawing steps. For example:

Step-by-step sketch process of a desk lamp, following this drawing order:
1. Lampshade – a cone-shaped top part that directs the light downward.
2. Light bulb - . . .
. . .
7. Light beam emanating from the bulb.

Each step describes a semantic component of the object rather
than low-level geometric primitives, and the ordering reflects natu-
ral drawing logic, such as sketching main forms before details and
structural elements before secondary details.
At inference time, we use an LLM [OpenAI 2026] to generate

structured drawing plans from high-level user input. This design
exploits the LLM’s strengths in semantic decomposition and plan-
ning [Vinker et al. 2025], while delegating visual realization and
temporal rendering to the video diffusion model.

4.3 Two-Stage Finetuning
While video diffusion models encode strong visual priors, they lack
an intrinsic notion of meaningful drawing order. As we demonstrate,
naive fine-tuning on sketch videos can produce sketch-like appear-
ance but often yields arbitrary or inconsistent stroke sequences. The
central challenge, therefore, is to achieve both high visual fidelity
and explicit temporal control over the sketching process.
We address this with a two-stage fine-tuning strategy that dis-

entangles these objectives. Before training on real-world sketches,
we first teach the model a basic drawing “grammar”: simple shapes,
their spatial relationships, and how to follow ordering instructions.
This design is inspired by how people learn to draw, starting with
simple shapes and compositional rules before progressing to more
complex subjects [Coss and Kellogg 1969; Edwards 1989].

Stage 1: Learning a Grammar 
of Shape Compositions 

𝑣!

Stage 2:  Distilling 
sketch appearance 

order 

𝑣!

finetune finetune 

+appearance 

Fig. 3. Two-stage fine-tuning scheme. Left: synthetic sketches composed
of simple geometric primitives teach drawing “grammar” and stroke or-
dering, independently of appearance. Right: a small set of human-drawn
sketches of real-world objects adapts the model to a target visual style.

In both stages, fine-tuning uses standard video diffusion training
with rectified flow matching. We do not modify the diffusion archi-
tecture or introduce task-specific losses; instead, learning is driven
entirely by carefully constructed data, allowing the pretrainedmodel
to acquire sketch-specific behavior through data alone.

Learning the “Grammar” of Shape Compositions. We construct
a small dataset of simple geometric primitives, including circles,
ellipses, triangles, rectangles, polygons, curves, and lines, encoded as
SVGs and rendered into sketch videos following the representation
described in the previous section. These primitives are arranged in
diverse spatial configurations inspired by Gestalt principles, such as
containment (a circle inside a rectangle), adjacency (shapes placed
side by side), overlap (partially occluding forms), and grouping
(clustered elements). These relationships reflect the compositional
building blocks underlying more complex sketches (see Figure 3).
For each configuration, we vary the order in which the shapes are
drawn, producing three distinct temporal variations per sketch.

Because the shapes are visually simple and semantically neutral,
this dataset minimizes appearance-related variability and encour-
ages the model to focus on learning temporal stroke ordering rather
than object-specific visual details. Text prompts explicitly describe
the intended drawing order, enabling the model to learn a direct
correspondence between linguistic ordering cues, such as “first draw
. . . , then draw . . . ,” and the temporal sequence of stroke additions.
This synthetic pretraining stage is critical: as we demonstrate in Sec-
tion 5.5, incorporating this initial fine-tuning stage with synthetic
shape compositions significantly improves ordering fidelity.

Distilling Sketch Appearance. While training on primitive shape
compositions is effective for learning stroke ordering, models trained
only on such data tend to compose drawings directly from these
primitives, resulting in sketches that lack the desired visual appear-
ance. To bridge this gap, we perform a second fine-tuning stage
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“An
Amsterdam
canal.”

“A Rome
street with
a cat.”

“A Tokyo
alley with
lanterns.”

Fig. 4. Qualitative results. Results generated with our fine-tuned video model. Full video results are provided in the supplementary materials.

using a small set of seven real-world sketches drawn by an artist: a
lamp, car, chair, tree, cup, butterfly, and flower (see Figure 3).

This stage adapts the model to the target visual aesthetic and level
of abstraction that we aim to produce at inference time. Because the
model has already learned to follow explicit ordering instructions
during the synthetic pretraining stage, this fine-tuning primarily
transfers appearance information rather than requiring the model
to infer stroke ordering from a limited number of examples.

4.4 Brush Conditioning
We further demonstrate the flexibility of video models as priors for
sequential sketch generation through a brush conditioning applica-
tion. The goal is to allow users to control sketch style—both brush
type and color—via a simple visual cue. Specifically, we provide the
model with a small brush exemplar placed in the top-left corner of
the canvas (see Figure 1), which guides stroke appearance through-
out the sketching process without requiring an explicit parametric
brush representation.
Training data is constructed using the same SVG sketches de-

scribed earlier, rendering each sketch with multiple brush styles
and colors, using six distinct brushes and eight colors in total. We
then fine-tune an image-to-video diffusion model [Wan et al. 2025]
using the same training procedure, with the first frame provided
as a conditioning input image. In all cases, the first frame consists
of a blank canvas augmented with the brush sample in the top-left
corner, allowing the model to infer the desired brush appearance
directly from the visual prompt.

4.5 Autoregressive Modeling
Our primary approach relies on diffusion-based video models that
generate the entire sketch sequence jointly rather than predicting
frames sequentially. In contrast, an autoregressive formulation —
where each frame is conditioned on previously generated frames— is
particularly well-suited for interactive sketching. Because sketching
is inherently sequential, with each stroke building on the current
canvas, this paradigm naturally aligns with drawing-based, user-in-
the-loop interaction.

“A traveler by a campfire”

“Lego man
waving”

“Running”

“Sitting”

Fig. 5. Diversity of sequential sketch generation. Top: two seeds for
the same prompt; Bottom: the same object in different settings/actions.

While autoregressive video models are less mature than diffusion-
based approaches, recentwork has demonstrated promising progress
[Chen et al. 2024; Cui et al. 2025; Huang et al. 2025; Yin et al. 2024a,b,
2025a]. As these models continue to improve, our framework re-
mains directly applicable, which we demonstrate by adapting our
approach to an autoregressive video model.
A key challenge in autoregressive modeling is the need for sub-

stantially larger, high-quality training datasets [Yin et al. 2025a].
To address this, we use our diffusion-based sketch model, trained
on a small set of real-world sketches, to generate a larger synthetic
sketch dataset. This synthetic data is then used to fine-tune an au-
toregressive model, enabling sequential sketch generation in the
autoregressive setting.
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Table 1. CLIP-based sketch recognition. Average Top-1 and Top-5 accu-
racy of a CLIP zero-shot classifier evaluated on the last frame of 100 sketches
from 50 categories. Results are reported as mean ± std across categories.

Method Top-1 Top-5

Naive Prompting (Wan 2.1) 0.92 ± 0.03 0.99 ± 0.01
PaintsUndo (FLUX 2) [Team 2024] 1.00 ± 0.00 1.00 ± 0.00
SketchAgent [Vinker et al. 2025] 0.48 ± 0.05 0.71 ± 0.05
Human (QuickDraw [Jonas et al. 2016]) 0.52 ± 0.05 0.70 ± 0.05

Ours 0.82 ± 0.04 0.96 ± 0.02
Ours (AR) 0.45 ± 0.04 0.70 ± 0.03

5 Results
Our method generates diverse sequential sketches, ranging from sin-
gle objects to complex multi-element scenes, as shown in Figures 1,
4 and 14. Despite being trained on only 7 real sketches, it generalizes
to complex scenes, including streets, canals, and alleys with multiple
buildings, characters, and vehicles, producing clean lines, coherent
perspective, and semantically meaningful stroke ordering (e.g., large
structures first, fine details last). Moreover, as shown in Figure 5,
our approach supports diverse outputs, either by varying the initial
noise for a fixed prompt or by modifying the specified action.

5.1 Text-Conditioned Sketch Generation
We quantitatively evaluate how well the generated sketches de-
pict the intended category. Following the evaluation protocol of
SketchAgent [2025], we randomly sample 50 categories from the
QuickDraw dataset [Jonas et al. 2016], and generate two sketches per
category using different random seeds, yielding 100 sketches in total.
We compare our method against several baselines, including naive
prompting of Wan2.1 [Wan et al. 2025], PaintsUndo [Team 2024],
SketchAgent [Vinker et al. 2025], and human-drawn sketches from
the QuickDraw dataset. Since PaintsUndo requires a final frame as
input, we provide final frames generated by FLUX2 [Labs 2025].
To quantify how well generated sketches depict the intended

category, we follow standard practice [2023; 2022; 2025] and employ
a CLIP ViT-B/32 zero-shot classifier on the final frame of each se-
quence. We report average Top-1 and Top-5 classification accuracy
in Table 1. Our method achieves 82% Top-1 accuracy, substantially
outperforming SketchAgent (48%) and human QuickDraw sketches
(52%), while reaching 96% Top-5 accuracy compared to 71% and 70%,
respectively. These results indicate that the fine-tuned video model
generalizes effectively to a wide range of categories far beyond the
seven sketches used during training.
We note that PaintsUndo attains high recognition scores be-

cause it is conditioned on a final image and reconstructs intermedi-
ate states that closely resemble the target, rather than generating
sketches from text alone. As such, its performance is not directly
comparable to methods that synthesize sketches from scratch. Wan
2.1 also achieves high final-frame recognition but, as shown in Sec-
tion 5.2, fails to produce meaningful stroke-by-stroke progression,
yielding nearly identical frames throughout the sequence. In con-
trast, our method produces both recognizable final sketches and
coherent drawing processes, as shown in Figures 6 and 16.
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Fig. 6. Qualitative comparison of sketch generation across methods. The
concept depicted is “a giraffe”.
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Fig. 7. CLIP-based recognition over the sketching process.Ourmethod
gradually increases semantic recognizability as the sketch progresses, in
contrast to baselines that either collapse temporal progression or attain
lower recognition. Shaded areas indicate variance across samples.

5.2 Sequential Sketching
Beyond semantic alignment with the text prompt, we evaluate the
quality of the sketching process itself. As shown in Figure 15, our
method produces clean, stroke-by-stroke progressions in which
strokes are added incrementally according to the specified order.
Varying the text instructions for the same concept results in distinct
sketching trajectories, demonstrating control over stroke ordering.

To assess whether the temporal progression is semantically mean-
ingful, we measure CLIP-based category recognition as a function
of video progress, as shown in Figure 7. Representative frames are
visualized in Figures 6 and 16 and in the supplementary material.

A naive prompting of Wan2.1 (gray) produces near-identical
frames throughout the sequence, resulting in a flat recognition
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Fig. 8. Brush style control via visual prompting. Left: brushes and colors
seen during training. Right: generalization to unseen brushes and colors.

curve. PaintsUndo (green) saturates rapidly, reaching high recogni-
tion early in the video, which reflects its undo-based formulation
where detailed structure appears upfront. While effective for its
intended task. In addition, PaintsUndo produces detailed, painting-
like outputs rather than the clean, vector-like sketches we target.
SketchAgent (red) more closely follows human-like progression, but
its outputs are often overly simplistic and sometimes fail to convey
recognizable concepts (e.g., the cow example in Figure 16).
Our method closely tracks human progression while achieving

substantially higher final accuracy (82% vs. 52% Top-1). As shown
in Figure 6, sketches evolve through semantically meaningful stages
that follow human-like ordering, such as drawing the body before
the neck and head, while producing more detailed final appearances.

5.3 Brush Style Control
Beyond stroke ordering, our video-based formulation offers flexibil-
ity in visual style. As shown in Figures 8 and 13, conditioning on
a brush exemplar in the first frame allows the model to reproduce
the target brush’s color and texture throughout the sketch. Notably,
this generalizes to brush styles and colors not seen during training.

To quantitatively evaluate generalization to unseen brush styles,
we apply five unseen colors and five unseen brushes to sketches
from 30 object categories, using two random seeds per category, for
a total of 1,500 samples. To measure alignment between the user-
provided brush exemplar and the generated strokes, following prior
style transfer work [Alaluf et al. 2024; Deng et al. 2024; Gatys et al.
2015], we compute the average ℓ2 distance between Gram matrices
extracted from three VGG-19 feature maps over stroke regions. As
a baseline, we compare each output against all 25 brush exemplars
used during evaluation, approximating the expected similarity to a
randomly chosen brush. Our method achieves an average distance
of 3.73 compared to 7.29 for the random baseline (a 49% reduction),
indicating strong alignment with the target brush style.

5.4 Autoregressive Generation
Finally, we examine adapting our framework to autoregressive
sketch generation, enabling interactive drawing scenarios that are
difficult to support with diffusion-based models. As shown in Fig-
ure 11, the autoregressivemodel produces visually coherent sketches
with clear stroke-by-stroke progression, although with slightly re-
duced visual fidelity compared to the diffusion-based approach.
We evaluate the autoregressive model using the same protocols

as in Sections 5.1 and 5.2. For final-frame recognition (Table 1),

User Model User Model User

Model User Model User Model

Fig. 9. Co-Drawing. Top: our interactive demo, where users draw alongside
the model in real time. Bottom: turn-based co-drawing for “a creature.”

it achieves 45% Top-1 and 70% Top-5 accuracy, comparable to hu-
man drawings (52%/70%) and SketchAgent (48%/71%). As shown
in Figure 7, the recognition trajectory over time (purple) follows a
gradual progression similar to human drawings (blue), indicating
that the autoregressive formulation preserves meaningful temporal
structure while enabling real-time interaction.
To demonstrate interactivity, we built a prototype collaborative

sketching interface in which the user and the model alternate adding
strokes to a shared canvas. As shown in Figure 9, users can co-draw
with the model in real time, with each adapting to the other’s con-
tributions to produce coherent sketches. This result demonstrates
the feasibility of turn-based co-drawing and highlights the potential
of autoregressive video models for interactive sketch generation.

5.5 Ablation Study
We ablate a key design choice in our training procedure, namely,
separating the learning of stroke ordering from sketch appearance.
We compare three variants: our full two-stagemodel, amodel trained
only on synthetic geometric primitives, and a model trained only
on seven human-drawn sketches.
Qualitative results (Figure 10) show that the two-stage model

is necessary to achieve both reliable ordering control and realistic
sketch appearance. Training only on primitives yields more consis-
tent ordering but produces primitive-like, less aesthetic, recogniz-
able drawings. In contrast, training only on real sketches improves
visual style, but often fails to follow the specified ordering. Combin-
ing both stages yields the best performance, transferring ordering
fidelity learned from synthetic compositions into the target domain.
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Cat: 1. Head. 2. Ears. 3. Body. 4. Legs. 5. Tail. 6. Face details.

Primitives Only

Human Sketches Only

Full

Cat: 1. Body. 2. Head. 3. Ears. 4. Face details. 5. Legs. 6. Tail.

Primitives Only

Human Sketches Only

Full

Fig. 10. Ablation study qualitative comparison. We compare sketching processes from models trained only on geometric primitives, only on real sketches,
and the full two-stage model. The full model combines the strengths of both baselines, producing visually appealing sketches that follow the specified order.

“An octopus”

“A squirrel”

“A penguin”

Fig. 11. Autoregressive results. Additional results from our autoregressive model, which enables interactive generation while maintaining visual quality
comparable to diffusion-based results.
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Table 2. Ablation study. Top: CLIP-based sketch recognition computed
over our three model variants. Bottom: ordering fidelity, where an LLM
compares target stroke orderings with those inferred from two generated
sketches and selects the closer match or “Neither”.

Recognition Ordering Fidelity
Method / Comparison Top-1 Top-5 Model A Model B Neither

Clip-Based Sketch Recognition
Primitives Only 0.73 0.86 – – –
7 Human Sketches Only 0.88 0.96 – – –
Full Model (Ours) 0.82 0.95 – – –

Ordering Fidelity (LLM Preference)
Primitives vs. 7-Human – – 50.0 37.2 12.8
Primitives vs. Full – – 26.9 53.4 19.7
7-Human vs. Full – – 29.6 48.3 22.1

To evaluate quantitatively, we measure CLIP Top-1 accuracy and
ordering fidelity (Table 2). Ordering fidelity is assessed via LLM-
based head-to-head comparisons against the target ordering, with
details provided in the supplementary materials.

Quantitatively, the fully fine-tuned model achieves CLIP recogniz-
ability comparable to the model trained only on seven real sketches,
indicating that visual aesthetic can be learned in a few-shot setting.
The primitives-only model outperforms the real-sketch-only model
in ordering fidelity, as expected given its focus on drawing gram-
mar. When compared against both baselines, the fully fine-tuned
model is strongly preferred in ordering fidelity, demonstrating that
the two-stage training successfully combines ordering control with
realistic sketch appearance. Although the full model outperforms
the primitives-only model in ordering fidelity, this can be partly
attributed to the simplicity of primitive-only sketches, which may
not be recognizable enough for the LLM to reliably infer the drawn
components and their order.

6 Limitations
While our method supports flexible sequential sketch generation
across a wide range of prompts and styles, it has several limita-
tions (see Figure 12). Operating in pixel space provides less explicit
structural control than parametric stroke representations, which
can occasionally lead to violations of sketching constraints, such as
multiple strokes appearing within a single frame. Second, prompt
adherence is not guaranteed. When the model has a strong visual
prior, it may deviate from the instructions. For example, in the “tiger
roaring” prompt, the model changes the action late in the video and
introduces color. Third, performance depends on the video model’s
knowledge of the concept. Compared to LLMs, video models are less
familiar with complex or specialized domains such as mathematics,
which can lead to failures on highly unusual concepts even when
detailed instructions are provided. Finally, while we demonstrate
autoregressive sketch generation, the resulting outputs do not yet
match the visual quality of the diffusion-based model, reflecting the
present maturity of autoregressive video models.

7 Conclusions
We presented a data-efficient approach for sequential sketch gen-
eration that leverages pretrained text-to-video diffusion models as

(a) Multiple strokes per frame

(b) Prompt adherence

“A tiger roaring”

(c) Limited knowledge

“𝑦 = 𝑥3”

(d) AR quality gap

“A lobster”

Fig. 12. Limitations. (a) Multiple strokes may appear together (in red). (b)
Model’s prior can override prompt. (c) Concepts outside the video model’s
knowledge are incorrectly depicted. (d) Reduced quality for AR outputs.

visual and temporal priors, guided by a large language model for
semantic planning and stroke ordering. By representing sketches
as videos and decoupling stroke ordering from sketch appearance,
our method generates coherent, text-conditioned drawing processes
with meaningful temporal structure, even when trained on only
a handful of examples. We further show that these video priors
support extensions such as brush style conditioning and autoregres-
sive sketch generation, enabling greater controllability and inter-
active applications. Together, these results highlight the potential
of pretrained video diffusion models as general-purpose priors for
modeling structured, temporally grounded creative processes.
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“A lighthouse on a rocky shore”

“A lobster”

“A squirrel”

Fig. 13. Additional results for brush style control.We show concepts drawn with seen (left) and unseen (right) brush styles and colors.

“A beach at sunset”

“A lighthouse on
a rocky shore”

“A medieval
town square”

“A shepherd
with sheep”

“A fisherman by
a river”

“A harbor city
with ships”

Fig. 14. Qualitative results. Additional results generated with our fine-tuned text-to-video model. Full video results are provided in the supplementary.
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1. Body. 2. Legs. 3. Head. 4. Trunk. 5. Ears. 6. Tail.

1. Trunk. 2. Head. 3. Ears. 4. Body. 5. Legs. 6. Tail

1. Torso. 2. Head. 3. Arms. 4. Legs. 5. Hands. 6. Face

1. Head. 2. Face. 3. Torso. 4. Arms. 5. Legs. 6. Hands.

Fig. 15. Text-specified stroke ordering. Each row shows the same concept generated using a different text prompt that specifies a distinct drawing order.

Wan 2.1

PaintsUndo

SketchAgent

Human

Ours

“A church” “A cow”

Fig. 16. Additional qualitative comparison of sequential sketch generation across methods. The Human drawings are taken from QuickDraw [Jonas
et al. 2016]. Full video results are provided in the supplementary materials.
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A Implementation Details
We use the pretrainedWan 2.1 14B [Wan et al. 2025] diffusion model
as our base video backbone. Fine-tuning is performed using LoRA
adapters applied to the attention layers and the first two layers of
the feed-forward networks in the diffusion transformer. This design
enables efficient adaptation while mitigating overfitting in the low-
data regime. All diffusion models are trained using a LoRA rank of
32 and the standard rectified flow matching loss.

Training is conducted on 7 NVIDIA A100 GPUs with a batch size
of 1 and a learning rate of 1e−4. The synthetic shape training stage
runs for 700 epochs on 15 videos. The additional fine-tuning on the
7 human-drawn sketches is then applied for 700 additional epochs.
Across all experiments, both training and inference are performed
at a resolution of 480 × 832 with 81 frames. Training overall takes
about 22 hours. At inference, for the best performance, we apply the
trained model with 50 inference steps (though using 10 steps also
produces plausible results and can save inference time). Inference
of a video with 81 frames with 50 denoising steps and resolution
480 × 832 takes 16 minutes on a single A100 GPU.

Brush-Conditioned Image-to-Video Model. For brush style condi-
tioning, we use the image-to-video variant of theWan 2.1 14B model.
The training data is augmented with 6 brush styles and 8 colors
(shown in Figure 17), resulting in 720 samples for the shape training
stage and 336 samples for the human-drawn real sketches stage.
The training process follows the same settings as described above
for the text-to-video diffusion model.

Autoregressive Model. For autoregressive sketch generation, we
use the CausVid [Yin et al. 2025a] model as the base video model,
which is a fine-tuned autoregressive variant of Wan 2.1 1.3B (a
smaller model compared to the 14B model, with slightly reduced
quality). We construct the training set using 43 videos generated by
our 14B text-to-video diffusion model, together with 7 real-world
sketches, yielding a total of 50 training videos. The 43 videos were
generated by randomly sampling categories from the QuickDraw
dataset (ones not used in our evaluation setup) and generating
detailed prompts for them. We train the full diffusion transformer

Fig. 17. Six brush styles (left) and 8 colors (right) used for training our
brush-conditioned model.

for 2700 epochs with a learning rate of 2e−6, using a regression loss
on the ODE trajectory. Qualitative results on QuickDraw prompts
are shown in Figures 35 and 36. Inference of a video with 81 frames
and resolution 480 × 832 takes about 11 seconds on a single A100
GPU. This means it takes about 4 seconds to produce 24 frames,
which is our default step size in the interactive demo, enabling
real-time interaction.

Quantitative Metrics. Stroke Ordering. In the ablation study pre-
sented in the main paper, we report quantitative measurements of
ordering fidelity for three model variants: a model trained solely on
simple geometric primitives, a model trained on only seven human-
drawn sketches, and our full model trained using the proposed
two-stage approach.

Since no established metrics exist for evaluating ordering fidelity
with respect to a text prompt, we adopt an LLM-guided evaluation
protocol consisting of two stages. First, given a video generated
by a model, we prompt an LLM to extract the sequence in which
semantic parts are drawn (e.g., “1. Body, 2. Head, 3. Face, . . . ”). To
ensure consistent terminology across models, we also provide the
LLMwith the target ordering, which constrains the vocabulary used
to describe the parts (e.g., enforcing the term “Body” rather than
alternatives such as “Torso”).
Next, we perform pairwise, head-to-head comparisons between

each combination of the three models. For each pair, the LLM com-
pares the extracted orderings against the target ordering and selects
the model that better adheres to it. When both models deviate from
or match the target ordering to a similar extent, the LLM is allowed
to return “Neither,” resulting in a tie. This evaluation is conducted
over 100 prompts from QuickDraw and three random seeds, with
the averaged results reported in Table 2 of the main paper.
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B Additional Experiments

B.1 Out-of-Distribution Concept Generation
In this section we evaluate our method on concepts requiring spe-
cialized knowledge. We follow the experimental setup of SketchA-
gent [Vinker et al. 2025], where three categories requiring general
knowledge are defined: Scientific Concepts, Diagrams, and Notable
Landmarks, with ChatGPT used to produce 10 random textual con-
cepts per category. We extend this setup by adding a Functions
category, as functions can be thought of as drawings requiring spe-
cialized knowledge while being easier to evaluate for correctness.
In summary, we use the following categories and concepts:

• Scientific Concepts
Double-slit experiment, Pendulum motion, Photosynthesis,
DNA replication, Newton’s laws of motion, Electromagnetic
spectrum, Plate tectonics, Quantum entanglement, Cell divi-
sion (mitosis), Black hole formation.

• Diagrams
Circuit diagram, Flowchart, Organizational chart, ER dia-
gram (Entity-Relationship), Venn diagram, Mind map, Gantt
chart, Network topology diagram, Pie chart, Decision tree.

• Notable Landmarks
Taj Mahal, Eiffel Tower, Great Wall of China, Pyramids of
Giza, Statue of Liberty, Colosseum, Sydney Opera House,
Big Ben, Mount Fuji, Machu Picchu.

• Functions
𝑦 = 𝑥2𝑦 =

√
𝑥,𝑦 = 𝑥3, 𝑦 = 𝑙𝑜𝑔(𝑥), 𝑦 = 𝑒𝑥 , 𝑦 = 1

𝑥
, 𝑦 =

𝑠𝑖𝑛(𝑥), 𝑦 = |𝑥 |, 𝑦 = 2𝑥,𝑦 = 𝑥 .

For each concept, we generate three random sketch sequences
using our method and compare with SketchAgent and Wan2.1 (as a
baseline, without any fine-tuning). Representative results showing
the last frame of each produced video are presented in Figures 18
to 20 and 22.
The Wan2.1 results reveal what the video model already knows

prior to fine-tuning. Concepts familiar to the base model will more
naturally transfer to our fine-tuned model. This is evident in the
Landmarks category (Figure 20), where our results are highly de-
tailed and recognizable, reflecting the model’s prior knowledge. For
Scientific Concepts, the pattern is more nuanced: where the base
model is limited (e.g., pendulum motion), our model inherits these
limitations, while for concepts like Newton’s laws and photosyn-
thesis, our model performs well.

This experiment also highlights the complementary strengths of
video-based and LLM-based approaches. For Landmarks (Figure 20),
SketchAgent produces overly simplistic outputs with low visual
quality (e.g., Eiffel Tower, Statue of Liberty), while ours are detailed
and recognizable. However, for Scientific Concepts (Figure 18), the
strong priors of LLMs enable SketchAgent to capture the correct
structure and rules — achieving correctness despite lower visual

aesthetics. This contrast is most apparent in the Functions category:
both Wan2.1 and our method fail to draw functions properly, while
SketchAgent’s LLM backbone enables more precise results.
We additionally assess recognizability quantitatively via classi-

fication with GPT-4o under two settings: (1) multi-choice, where
the model selects among the 10 category concepts or “none” (easier
setting), and (2) free-text, where the model describes the sketch with-
out provided options and we analyze whether the output matches
the class (stricter setting). Results are reported in Figure 21. The bar
chart reflects the patterns observed visually: there is clear correla-
tion between base model success (red) and our model (green), where
knowledge can be lost (as in Scientific Concepts), while SketchA-
gent struggles on Landmarks and concepts requiring high detail
and visual quality.

SketchAgent Wan 2.1 Ours

“Double-
slit

experiment”

“Quantum
entanglement”

“Pendulum
motion”

“Photo-
synthesis”

“Newton’s
laws of
motion”

Fig. 18. Scientific Concepts. Representative results for scientific concepts
across methods. SketchAgent leverages LLM knowledge to capture concep-
tual structure (e.g., the interference pattern in double-slit, F=ma in Newton’s
laws), though with limited visual detail. Wan 2.1 occasionally produces
informative diagrams but often includes colored backgrounds and text
labels rather than sketch-style outputs. Our method produces visually co-
herent sketches, inheriting both the strengths and limitations of the base
model—performing well on concepts like photosynthesis while struggling
with more abstract ones like pendulum motion.
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SketchAgent Wan 2.1 Ours

“Circuit
diagram”

“Flow
-chart”

“Venn
diagram”

“Mind
map”

“Pie
chart”

Fig. 19. Diagrams. Representative results for diagram concepts. SketchA-
gent produces structurally correct but visually minimal outputs. Wan 2.1
generates detailed diagrams with text and color, deviating from a sketch
aesthetic. Our method captures the visual structure of diagrams (e.g., con-
nected nodes in flowcharts and mind maps, overlapping circles in Venn
diagrams) with a cleaner sketch style, though text elements are often gar-
bled or nonsensical.

B.2 Quantitative Evaluation

B.3 Sketch Progression
To verify that generated sketches unfold sequentially rather than
collapsing temporally, wemeasure the number of newly added pixels
at each frame throughout the sketching process. Specifically, we
compute the cumulative ratio of added pixels as a function of video
progress, normalized so that the final frame equals 1 (see Figure 23).
Both our diffusion-based and autoregressive models exhibit smooth,
gradual accumulation curves, indicating that strokes are introduced
incrementally across frames in a manner consistent with human
drawing behavior. In contrast, baseline methods tend to introduce a
large fraction of pixels early in the sequence, as also reflected in the
qualitative results.

SketchAgent Wan 2.1 Ours

“Eiffel
Tower”

“Statue of
Liberty”

“Sydney
Opera
House”

“Taj
Mahal”

“Great
Wall
of

China”

Fig. 20. Notable Landmarks. Representative results for landmark concepts.
This category highlights the strength of video-based approaches: both Wan
2.1 and our method produce detailed, highly recognizable depictions, re-
flecting the strong prior knowledge of landmarks in video training data.
In contrast, SketchAgent’s outputs are overly simplistic and often fail to
capture the iconic features (e.g., the Eiffel Tower reduced to basic triangles,
the Statue of Liberty barely recognizable).

Table 3. Stroke continuity evaluation. We measure the frequency of
frames containing multiple disjoint strokes on QuickDraw object concepts
(typically simpler concepts) and scene-level prompts (typically more complex
concepts).

Evaluation Set Num. Total Multi-Stroke Ratio ↓
Samples Frames Frames

QuickDraw Concepts 200 15196 2975 19.58%
Scenes 80 6361 2351 36.96%

B.4 Multi-Stroke Emergence Evaluation
Because our models generate sketches directly in pixel space, they
do not explicitly enforce stroke continuity. As a result, a single frame
may contain multiple disjoint strokes that emerge simultaneously.
We quantify this effect by computing the percent of frames that
contain multiple strokes, reported in Table 3.
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Fig. 21. Classification accuracy across categories. Video-based methods
excel on Landmarks ( 97% vs. 63.3% for SketchAgent), while SketchAgent
dominates Functions due to its LLM backbone. Our method’s accuracy
closely tracks Wan 2.1, confirming that both knowledge and limitations
transfer from the base model.

We evaluate this behavior on two sets: 100 QuickDraw object
concepts, which can be considered relatively simple (e.g., cake, ice
cream, pants), and 40 scene-level prompts, which are more complex
(e.g., a Paris street at dusk). For each concept, we generate two sketch
videos with different random seeds, resulting in 200 QuickDraw
videos and 80 scene videos in total. As shown in Table 3, multi-
stroke behavior occurs less frequently for QuickDraw concepts
than for scene-level prompts, suggesting that increased concept
complexity — typically requiring a larger number of strokes —makes
this phenomenon more pronounced. Exploring models that operate
over longer video lengths, as well as mechanisms that more strongly
encourage stroke continuity in pixel space, may help distribute
stroke generation more evenly over time and mitigate this effect,
particularly for complex scenes.

C Interactive Sketching Interface
Figure 24 shows a demo of our interactive sketching interface.
We built a prototype collaborative interface for the autoregressive

SketchAgent Wan 2.1 Ours

“𝑦 = 𝑥3”

“𝑦 =

log(𝑥 )”

“𝑦 = 𝑥2”

“𝑦 =

sin(𝑥 )”

“𝑦 = 𝑒𝑥 ”

Fig. 22. Functions. Representative results for mathematical functions.
This category most clearly demonstrates the advantage of LLM-based ap-
proaches: SketchAgent produces precise, mathematically correct curves
due to its language model backbone. Both Wan 2.1 and our method strug-
gle—curves are often incorrect or unrecognizable, and text/equations are
garbled (e.g., 𝑦 = 𝑙𝑜𝑔 (𝑥 ) in our output). This reveals a fundamental lim-
itation of video models for concepts requiring symbolic or mathematical
knowledge.

model, where the user and the model co-draw on a shared canvas,
given a text prompt. The interaction is turn-based: the user can add
(or erase) strokes, then the model continues the sketch by predicting
the next sequence of strokes conditioned on the current canvas. This
enables real-time, incremental refinement and allows the model to
adapt to user edits on-the-fly.
The interface exposes core generation parameters such as res-

olution, number of frames per run, overlap between consecutive
runs, and random seed. At first run, the concept from the user input
will be refined to a detailed prompt automatically by an LLM. Each
press of the Run button generates a short continuation segment;
overlap frames refers to context frames obtained from the previous
run, which are used to stitch segments smoothly while preserving
existing content. Users can switch between brush and eraser tools
to modify the canvas between runs, enabling iterative co-creation
with the model.
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Fig. 23. Accumulated ratio of newly added pixels as a function of
video progress. Values are normalized such that the final frame equals 1.
Our method exhibits a smooth and steady accumulation curve, reflecting
incremental stroke additions over time and closelymirroring human drawing
behavior.

Fig. 24. Demo of our interactive sketching interface. Users can co-draw
with the model on the shared canvas for a concept.

D Prompt Adherence
We evaluate prompt adherence by progressively enriching an ini-
tially simple text instruction with additional details. As shown in
Figure 25, the model follows the updated prompt by adding the
newly requested elements (e.g., doors, chimney, windows, fence)
while maintaining the previously drawn structure, demonstrating
compositional control over the sketching process.

E Training Data
We visualize the training data used for training our two-stage model.
In Figures 26 and 27 we provide exemplars of the simple geometric
primitives used in the first stage. We also provide the seven real
human sketches used in our second stage in Figure 28.

F Additional Qualitative Results
Text-to-Video Results. We provide additional sketch results of our

text-to-video model in Figures 29 and 30, covering diverse prompts
and instructions. These examples highlight clean, high-quality, and
semantically meaningful sketches with incremental drawing pro-
gression over time.

Image-to-Video Results. We show image-to-video model results
in Figures 31 to 34. Conditioning on the first-frame brush exemplar
enables faithful transfer of color and texture across the full sequence,
including brush styles not seen during training.

Autoregressive Results. We include additional sketches of our au-
toregressive model in Figures 35 and 36. These sequences preserve
coherent, stroke-by-stroke progression, although with slightly re-
duced visual fidelity compared to our diffusion-based models.
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“A house”

“A house with doors”

“A house with chimney and doors”

“A house with chimney, doors, and windows”

“A house with chimney, doors, windows, and fence”

Fig. 25. Prompt adherence with incremental details. Given a base concept (a house), we progressively add details in a prompt (e.g., with doors, with
chimney and doors, with chimney, doors, and windows, and with chimney, doors, windows, and fence). The generated sketch sequences consistently follow the
prompt and incorporate the newly requested elements.
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“Large oval
with shapes”

“Large oval
with shapes”

“Large oval
with shapes”

“Three polygonal
shapes”

“Three polygonal
shapes”

“Three polygonal
shapes”

“Three stacked
shapes”

“Three stacked
shapes”

“Three stacked
shapes”

Fig. 26. Training data exemplars of our simple geometric primitives. Examples of the simple geometric primitives used in the first stage of our fine-tuning
pipeline, focused on teaching the model basic drawing “grammar”.
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“Free-form shapes
and loose lines”

“Free-form shapes
and loose lines”

“Free-form shapes
and loose lines”

“Two shapes
and loose lines”

“Two shapes
and loose lines”

“Two shapes
and loose lines”

Fig. 27. Training data exemplars of our simple geometric primitives. Additional examples of the simple geometric primitives used in the first stage of
our fine-tuning pipeline, focused on teaching the model basic drawing “grammar”.
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“Butterfly”

“Car”

“Chair”

“Coffee cup”

“Flower”

“Desk lamp”

“Tree”

Fig. 28. Our seven real human sketches used for training.We provide the seven human-drawn sketches used in the second stage of our fine-tuning
pipeline.
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“An ancient
observatory”

“A bakery
opening at dawn”

“A blacksmith
forge”

“A chalkboard
with diagrams”

“A floating
city”

“A forest with
glowing

mushrooms”

“A forest
path”

“A giant tree
with a door”

“A glowing cave
entrance”

“A glowing path
into the unknown”

“An inn at
a crossroads”

Fig. 29. Additional text-to-video results (1/2). Additional qualitative results generated with our text-to-video model.
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“A mapmaker’s
desk”

“A market
street”

“A mountain
lake”

“A Paris street
at dusk”

“A park bench
scene”

“A portal in
a field”

“A rocket
launch”

“A snowy
village”

“A stone bridge
over a river”

“A telescope
on a cliff”

“A traveler
by a campfire”

Fig. 30. Additional text-to-video results (2/2). Additional qualitative results generated with our text-to-video model.
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“Girl riding
a unicorn”

“Robot at
a mirror”

“Amsterdam
canal”

“Lighthouse
on rocks”

“Rome street
with a cat”

Fig. 31. Additional brush control I2V results.We show results using an unseen brush style (caligraphy-vertical) and color (indigo-blue).

“Girl riding
a unicorn”

“Robot at
a mirror”

“Amsterdam
canal”

“Lighthouse
on rocks”

“Rome street
with a cat”

Fig. 32. Additional brush control I2V results.We show results using an unseen brush style (hard-large-dots) and color (pink).
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“Girl riding
a unicorn”

“Robot at
a mirror”

“Amsterdam
canal”

“Lighthouse
on rocks”

“Rome street
with a cat”

Fig. 33. Additional brush control I2V results.We show results using an unseen brush style (bubbles) and color (mustard-olive).

“Girl riding
a unicorn”

“Robot at
a mirror”

“Amsterdam
canal”

“Lighthouse
on rocks”

“Rome street
with a cat”

Fig. 34. Additional brush control I2V results.We show results using an unseen brush style (caligraphy) and color (mocha-brown).
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“A cake”

“Pants”

“A teapot”

“A squirrel”

“A piano”

“A table”

“A penguin”

“A television”

“A bowtie”

“A cell
phone”

“An octopus”

Fig. 35. Autoregressive results. Additional autoregressive model results onQuickDraw prompts.



28 •

“A couch”

“A flamingo”

“A shoe”

“A skull”

“A bee”

“A dishwasher”

“A sink”

“A helicopter”

“A mug”

“A bulldozer”

“A washing
machine”

Fig. 36. Autoregressive results. Additional autoregressive model results onQuickDraw prompts.
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